FISEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and structure–activity relationship of substitutions at the C-1 position of $\Delta 9$ -tetrahydrocannabinol

David Burdick, Russell DeOrazio*, Peter Guzzo, Alicia Habershaw, Mark Helle, Bernard Paul, Mark Wolf

AMRI, 26 Corporate Circle, PO Box 15098, Albany, NY 12212-5098, USA

ARTICLE INFO

Article history: Received 27 October 2009 Accepted 24 December 2009 Available online 4 January 2010

Keywords: Cannabinoid receptor type 1 Cannabinoid receptor type 2 Δ9-Tetrahydrocannabinol

ABSTRACT

A novel series of $\Delta 9$ -tetrahydrocannabinol ($\Delta 9$ -THC) analogues were synthesized to determine their potential as cannabinoid receptor modulators. Chemistry focused on conversion of the phenol of $\Delta 9$ -THC to other functionality through palladium catalyzed reactions with an intermediate triflate **2**. Two analogues with sub 100 nM affinity for the CB₁ and CB₂ receptors were identified.

© 2009 Elsevier Ltd. All rights reserved.

Cannabinoid receptor type 1 (CB₁) and cannabinoid receptor type 2 (CB₂) are G-protein coupled receptors. The CB₁ receptors are found primarily on central and peripheral neurons while CB₂ receptors are located in the periphery. There is much interest in cannabinoids for their therapeutic potential. CB₁ agonists have the potential to treat pain, neurodegenerative disease, and glaucoma. Also of interest are CB₂ agonists which have the potential to treat neuropathic pain, asthma, allergies, rheumatoid arthritis, atherosclerosis, and autoimmune diseases. Therapeutic interest of CB₁ antagonists includes use for the treatment of obesity, smoking cessation, and psychosis. Currently, Dronabinol (Δ 9-THC) and Nabilone are marketed for nausea and vomiting and Nabilone is undergoing clinical trials for neuropathic pain.

Our goal was to discover selective CB_2 agonists for the treatment of neuropathic pain by modifying $\Delta 9$ -THC (1) at the C-1 position. Substitution has been explored at the C-1 position of some cannabinoids.³ We focused on examining amino, amide, thiol, and aminomethyl analogues of $\Delta 9$ -THC which have not been reported in the literature. Analogues were designed to be relatively small and/or to decrease lipophilicity. Since $\Delta 9$ -THC (1) is very lipophilic, it was desired to synthesize analogues with polar groups or heterocycles to increase water solubility and potentially reduce brain exposure. Compounds that are selective for CB_2 and with reduced brain penetration would provide separation from potential CNS side effects due to CB_1 agonism.

The synthesis of amine **3** is illustrated in Scheme 1. Δ 9-Tetrahydrocannabinol⁴ (**1**) was converted to trifluoromethanesulfonate intermediate **2**. Cross-coupling of **2** with benzophenone imine cat-

As shown in Scheme 2, trifluoromethanesulfonate intermediate **2** was converted to nitrile **4** with zinc cyanide and Pd(PPh₃)₄. Nitrile **4** was reduced with LiAlH₄ to provide amine **6**. Palladium catalyzed CO insertion with Pd(OAc)₂/Xantphos in DMSO with *N*-hydroxysuccinimide present gave *N*-hydroxysuccinimide ester **5**. Couplings of ester **5** with amines failed to give desired amides or were low yielding (amides **7e** and **7f** were obtained by this route in 17% and 18% yields, respectively). The low yields were due to competitive addition at the succinimide carbonyls. To obtain additional amide analogues in greater yields ester **5** was converted to carboxylic acid **7a** and couplings were achieved with EDCI/HOBT in 59–62% yields.

8
9
10
OH
7
$$A = A = A$$
 $A = A$
 $A =$

Scheme 1. Reagents: (a) (Tf)₂O, DIPEA, CH₂Cl₂; (b) Ph₂C=NH, Pd(OAc)₂, (*R*)-BINAP, Cs₂CO₃, THF; (c) THF, H₂O, HCl.

alyzed with Pd(OAc)₂/(R)-BINAP followed by hydrolysis gave amine **3.**⁵

As shown in Scheme 2, trifluoromethanesulfonate intermediate

^{*} Corresponding author. Tel.: +1 518 464 0279. E-mail address: russell.deorazio@amriglobal.com (R. DeOrazio).

Scheme 2. Reagents and conditions: (a) Zn(CN)₂, Pd(PPh₃)₄, DMF, 100 °C; (b) LiAlH₄, THF; (c) CO, *N*-hydroxysuccinimide, Xantphos, Pd(OAc)₂, DIPEA, DMSO, 70 °C; (d) amine, THF, reflux; (e) THF, H₂O, Et₃N, reflux then amine, EDCI, HOBT, DIPEA DMF

$$\begin{array}{c} \text{SO}_2R \\ \text{NH} \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\ \text{NH} \\ \text{n} = 0, 1 \\ \text{SO}_2R \\ \text{NH} \\$$

Scheme 3. Reagents: (a) methyl chloroformate, Et₃N, CH₂Cl₂; (b) sulfonyl chloride, pyridine, CH₂Cl₂; (c) isocyanate, DMF or THF, heat; (d) acid chloride, Et₃N, CH₂Cl₂; (e) Mel, K₂CO₃, CH₃CN.

Scheme 4. Reagents and conditions: (a) Pd(OAc)₂, PPh₃, Cs₂CO₃, TIPS-SH, toluene, 100 °C; (b) Ac₂O, TBAF, THF; (c) KOH in MeOH, MeI, EtOH; (d) *m*-CPBA, CH₂Cl₂, -10 °C

Amines **3** and **6** were elaborated as shown in Scheme 3. A diverse set of compounds including carbamates, sulfonamides, ureas, amides, and substituted amines were synthesized. Carbamate **8** was obtained by treatment of compound **3** with methyl chloroformate. Sulfonamides **9** and **10** were prepared from reaction of **3** or **6** with the desired sulfonyl chloride. Urea **11b** was synthesized from reaction of amine **3** with methylisocyanate. The unsubstituted ureas **11a** and **12** were arrived at from treatment of amine **3** or **6** with trimethylsilylisocyanate. A series of amides **13a**–**c** and **14** were prepared from reaction of the desired acid chloride with **3** or **6**. Alkylation of amine **3** with methyl iodide provided the di-methylated product **15**.

Synthesis of the sulfur analogues is outlined in Scheme 4. Triflate **2** was treated with triisopropylsilanethiol using Pd(OAc)₂/PPh₃ to provide the TIPS protected thiol.⁹ Treatment of the protected thiol with acetic anhydride followed by a solution of TBAF in THF provided thioacetate **16**.¹⁰ The thioacetate was treated with KOH and methyl iodide to provide **17** and oxidized with *m*-CPBA to afford diastereomers **18a-b** which were separated by silica gel chromatography.

The carboxylic acid and the amide analogues shown in Table 1 were tested in both CB_1 and CB_2 in vitro binding assays. ^{11,12} These derivatives were all found to give greater than 3 μ M affinities for the CB_1 receptor. Acid **7a** and bis-amide **7e** are not tolerated while

Table 1Acid and amide analogues

Compound	R ¹	CB ₁	CB ₂
		K_{i} (nM)	K_{i} (nM)
1	-OH	40 ^a	36 ^a
7a	−CO ₂ H	>3000	>3000
7b	-CONH ₂	>3000	2190
7c	−CONHCH ₃	>3000	1260
7d	$-CON(CH_3)_2$	>3000	1210
7e	-CONHCH ₂ CONH ₂	>3000	>3000
7f	HN—OH	>3000	2000

^a See Ref. 13.

Table 2 Amino and aminomethyl analogues

Compound	R ¹	CB_1 K_i (nM)	CB ₂ K _i (nM)
3	-NH ₂	616 ^a	215ª
4	-CN	1720 ^a	387 ^a
8	-NHCO ₂ CH ₃	>3000	1400
9	-NHSO ₂ CH ₃	>3000	1720
11a	-NHCONH ₂	>3000	>3000
11b	−NHCONHCH ₃	>3000	2050
13a	−NHCOCH ₃	>3000	1400
13b	$-NHCOCH_2N(CH_3)_2$	>3000	>3000
13c	-NH N	>3000	1770
15	$-N(CH_3)_2$	>3000	>3000
6	-CH ₂ NH ₂	>3000	>3000
10	-CH ₂ NHSO ₂ CH ₃	>3000	>3000
12	-CH ₂ NHCONH ₂	>3000	782
14	-CH ₂ NHCOCH ₃	>3000	1500

a n - 2

Table 3
Thiol analogues

Compound	R ¹	CB_1 K_i (nM)	CB_2 $K_i (nM)$
17	–SCH₃	955	469
18a	–SOCH₃ diast A	>3000	1930
18b	–SOCH₃ diast B	>3000	>3000

other amides (7b-d and 7f) maintain low micromolar affinity at the CB_2 receptor.

The in vitro results for the amino and aminomethyl analogues are presented in Table 2. 11,12 The primary amine **3** and nitrile **4** showed affinity for both receptors with a 3–4-fold selectivity for the CB₂ receptor. Conversion of **3** into carbamates, sulfonamides, ureas, or amides resulted in a sixfold or greater loss in activity for both the CB₁ and CB₂ receptors. Insertion of a methylene spacer generally resulted in loss of potency (**3** vs **6**; **9** vs **10**), however urea **12** did show improved CB₂ affinity compared to **11a**. The data indicates that small polar groups are well tolerated with regard to activity and selectivity.

Table 3 provides the results for the thiol analogues. ^{11,12} The thiomethyl ether analogue **17** demonstrated affinity for both receptors with a twofold selectivity for CB₂ over the CB₁ receptor. Oxidation of **17** to the corresponding sulfoxide resulted in loss of activity in both diastereomers **18a-b**.

The 1,1-dimethylheptyl (DMH) sidechain commonly increases potency of $\Delta 9$ -THC analogues by 100-200-fold. Consequently, analogues where the n-pentyl side chain of $\Delta 9$ -THC was replaced with a DMH sidechain were also explored. The binding results of this series are shown in Table 4. The binding affinities for $\Delta 9$ -THC-DMH, **19**, are shown in the table for comparison.

In general the functionalized DMH analogues demonstrated an increased affinity for both CB₁ and CB₂. As expected from our pre-

Table 4 1,1-Dimethylheptyl analogues

Compound	R^1	CB ₁ K _i (nM)	CB ₂ K _i (nM)	CB ₁ /CB ₂ Ratio
19 20 21 22 23	-OH -CN -NH ₂ -NHCOCH ₃ -NHCONHCH ₃	0.24 ^a 67.8 ^b 11.7 ^b 1340 333	0.20 ^a 5.3 ^b 2.9 ^b 216 257	1 13 4 6
24 25	NH NO NO NHSO ₂ CH ₃	>3000	1090 255	>3 7

a See Ref. 14a.

vious results small groups provide both affinity and selectivity. Compounds **20** and **21** demonstrate comparable affinities for both the CB₁ and CB₂ receptors as $\Delta 9$ -THC (1). Also, nitrile **20** shows a 13-fold selectivity for CB₂ over the CB₁ receptor, representing a significant improvement over $\Delta 9$ -THC.

In summary, a series of novel $\Delta 9$ -THC analogues were synthesized. The synthetic strategy to convert the phenol of $\Delta 9$ -THC to other functionalities via the aryl triflate was successful. From these efforts two hits with approximately 300 nM affinity for the CB2 receptor were discovered. Conversion of the n-pentyl sidechain to the DMH sidechain increased potency of the hits to <10 nM. This data indicates that potent and selective compounds for the CB2 receptor can be achieved by modification of $\Delta 9$ -THC.

References and notes

- (a) Pertwee, R. G. Curr. Med. Chem. 1999, 6, 635; (b) Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.; Devane, W. A.; Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R.; Mechoulam, R.; Pertwee, R. G. J. Pharmacol. Rev. 2002, 54, 161
- (a) Hertzog, D. L. Expert Opin. Ther. Patents 2004, 14, 1435; (b) Grotenhermen, F. Curr. Drug Targets CNS Neurol. Disord. 2005, 4, 507.
- (a) Razdan, R. K. Pharmacol. Rev. 1986, 38, 75; (b) Crocker, P. J.; Mahadevan, A.; Wiley, J. L.; Martin, B. R.; Razdan, R. K. Bioorg. Med. Chem. Lett. 2007, 17, 1504.
- 4. Burdick, D. C.; Collier, S. J.; Jos, F. Biolatto, B.; Bernhard, P.; Meckler, H.; Helle, M.; Habershaw, A. J. U.S. Patent 2007/0093665 A1.
- (a) Wolfe, J. P.; Åhman, J.; Sadighi, J. P.; Singer, R. A.; Buchwald, S. L. Tetrahedron Lett. 1997, 38, 6367; (b) Teplý, F.; Stará, I. G.; Starý, I.; Kollárovič, A.; Šaman, D.; Vyskočil, Š.; Fiedler, P. J. Org. Chem. 2003, 68, 5193.
- 6. Selnick, H. G.; Smith, G. R.; Tebben, A. J. Synth. Commun. **1995**, 25, 3255.
- Lou, R.; VanAlstine, M.; Sun, X.; Wentland, M. P. Tetrahedron Lett. 2003, 44, 2477.
- Jiang, G.; Stalewski, J.; Galyean, J. D.; Schteingart, C.; Broqua, P.; Aebi, A.; Aubert, M. L.; Semple, G.; Robson, P.; Akinsanya, K.; Haigh, R.; Riviere, P.; Trojnar, J.; Junien, J. L.; Rivier, J. E. J. Med. Chem. 2001, 44, 453.
- 9. Kreis, M.; Braese, S. Adv. Synth. Catal. 2005, 347, 313.
- Arnould, J. C.; Didelot, M.; Cadilhac, C.; Pasquet, M. J. Tetrahedron Lett. 1996, 37, 4523.
- 11. The compounds were characterized by ¹H NMR, APCI or ESI mass spectrum analysis, and HPLC analysis. Structural analysis was also confirmed by COSY and NOESY on most of the final targets.
- (a) Testing was performed at MDS Pharma Services—Taiwan Ltd. Pharmacology Laboratories. Compounds were tested in cannabinoid CB₁ and cannabinoid CB₂ radioligand binding assays.; (b) Compton, D. R.; Rice, K. C.; DeCosta, B. R.; Razdan, R. K.; Melvin, L. S.; Johnson, M. R.; Martin, B. R. J. Pharmacol. Exp. Ther. 1993, 265, 218; (c) Rinaldi-Carmona, M.; Calandra, B.; Shire, D.; Bouaboula, M.; Oustric, D.; Barth, F.; Casellas, P.; Ferrara, P.; Le Fur, G. J. Pharmacol. Exp. Ther. 1996, 278, 871; (d) Munro, S.; Thomas, K. L.; Abu-Shaar, M. Nature 1993, 365, 61.
- 13. Huffman, J. W. Curr. Pharm. Des. 2000, 6, 1323.
- (a) Rhee, M.-H.; Vogel, Z.; Barg, J.; Bayewitch, M.; Levy, R.; Hanus, L.; Breuer, A.;
 Mechoulam, R. J. Med. Chem. 1997, 40, 3228; (b) Worm, K.; Zhou, Q. J.; Stabley,
 G. J.; DeHaven, R. N.; Dolle, R. E. Bioorg. Med. Chem. Lett. 2007, 17, 3652.

b n = 2.